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A covariant general treatment of the amplitude for isoscalar vector-meson production in pseudoscalar 
meson-baryon collisions is presented. For the low-energy region, a model is devised by assuming the invariant 
amplitudes to obey a one-dimensional dispersion relation. The formalism is applied to the reaction pion 
+nucleon —> a> meson+nucleon, for which the single-nucleon and the pion-nucleon cut are taken to dominate 
the direct channel, while the crossed channels are described by p-meson and nucleon-exchange processes. 
In the energy range of interest, the pion-nucleon cut is further approximated by the isospin J isobars. In the 
multipole amplitudes of the resonances, for which a Breit-Wigner formula is assumed, only the lower co 
angular momentum is exhibited. The differential and the total cross sections are thus expressed in terms of 
the coupling constants involved and the resonant partial widths, which are to be determined by comparing 
with the available experimental data. A satisfactory fit is obtained using only the Born terms as a preliminary 
step, with the following values for the coupling constants: 

^74^=14 .4 , gw/„r2/47r=10.5, gco2/47r=1.0, g »/4T = 0 .4 , gpm
2/^ = 0A, and , c = - 1 . 0 . 

I. INTRODUCTION 

DURING the past few years, experiments have 
revealed the existence of several unstable vector 

mesons. All these mesons—p, a>, K*, <p being the best 
established ones—decay via strong interactions. Conse­
quently, they have been considered to be resonances 
by some physicists, while others would prefer to regard 
them as being as fundamental as any other particles. 

An S-matrix approach to the production of these 
unstable mesons encounters the difficulty that in such 
a theory the transitions are defined only between 
asymptotic states. A possibility to overcome this 
obstacle would be to treat the unstable particle as a 
resonance of the multiparticle final state. Such an 
approach was used by several authors.1 However, this 
kind of program seems to be even more difficult to 
realize for the w-meson ("3 7r-resonance") production. 
Hence, we shall treat in this work the vector mesons as 
metastable particles, as far as their production is con­
cerned. We shall explicitly consider the production of 
vector mesons having zero isotopic spin, which appear 
to have the smaller decay widths (<10 MeV), and for 
which our approach should be more suitable. 

The interesting physical quantities we intend to 
learn by comparing our theoretical treatment with ex­
perimental data are the coupling constants of the vector 
mesons to nucleons. Several theoretical papers have 
already appeared,2 in which information on these cou-
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1 L . F. Cook and B. W. Lee, Phys. Rev. 127, 283 and 297 (1962). 

J. S. Ball, W. R. Frazer, and M. Nauenberg, ibid. 128,478 (1962). 
P. Federbush, M. T. Grisaru, and M. Tausner, Ann. Phys. (N. Y.) 
18, 23 (1962). S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. 
Sarker, ibid. 18, 198 (1962). 

2 S. Sawada, T. Ueda, W. Watari, and M. Yonezawa, Progr. 
Theoret. Phys. (Kyoto) 28, 991 (1962). A. Scotti and D. Y. Wong, 
Phys. Rev. Letters 10, 142 (1963) and to be published. R. A. 

pling constants is sought by calculating the nucleon-
nucleon scattering amplitude with these mesons enter­
ing into intermediate states and comparing it with the 
experimental observables from proton-proton and neu­
tron-proton scattering in the low-energy (<400-MeV) 
region. We feel that a theoretical analysis of the pro­
duction process of vector mesons offers an independent 
and more direct way to the study of the vector-meson-
nucleon interaction. 

In this work we shall study the vector-meson produc­
tion through the process pseudoscalar meson+baryon—» 
vector meson+baryon. The quantum numbers of the 
particles here suggest a comparison to the meson photo-
production process treated by Chew, Goldberger, Low, 
and Nambu.3 In their classical paper which applies a 
dispersion theoretic approach, use is made of unitarity 
in order to relate the pion photoproduction amplitudes 
to pion-nucleon scattering phase shifts. Unfortunately, 
such a simple relation does not exist in our case. It is 
now much more complicated due to the fact that there 
are many competing open channels coupled to the 
process of interest. However, we shall assume that 
single-production channel treatment and a Cini-Fubini 
one-dimensional dispersion relation4 are valid in the 
low-energy production region. There have been recently 
several theoretical articles in which pion photoproduc­
tion,5 photoproduction of strange particles6 and asso-

Bryan, C. R. Dismukes and W. Ramsay, Nucl. Phys. 45, 353 
(1963). W. Ramsay, Phys. Rev. 130, 1552 (1963). 

3 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 
Phys. Rev. 106, 1345 (1957). 

4 M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960). 
5 M . Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963). 

Ph. Salin, ibid. 28, 1294 (1963). D. S. Beder, ibid, (to be 
published). 

6 S. Hatsukade and H. J. Schnitzer, Phys. Rev. 128, 468 (1962); 
132, 1301 (1963). M. Gourdin and J. Dufour, Nuovo Cimento 27, 
1410 (1963). T. K. Kuo, Phys. Rev. 129, 2264 (1963); 130, 1537 
(1963). 
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FIG. 1. Diagram for the 
production process. 

V 

dated production by pions7 were treated quite success­
fully along similar lines. 

The analysis of a specific reaction, TT+N—>CO+N is 
carried out in detail. Besides all the Born terms, the 
spectral functions will be approximated by the existing 
resonant states in the respective channels. A prelimi­
nary but suggestive numerical analysis is done and 
compared with the experimental result by Fields et al.s 

Speculations have been occasionally made9 that produc­
tion processes of some of the vector mesons occur 
mainly through a vector-meson (sometimes plus a 
pseudoscalar-meson) exchange. Although this exchange 
mechanism might be important for certain processes in 
a certain energy range, in our case of co production, the 
single-particle exchange, which would be a p-meson ex­
change, is not supported by available experimental 
data.8 We give arguments in Sec. I l l to explain why this 
simple picture is not adequate, and consequently we 
feel that a more complete theoretical attempt is needed. 

In Sec. II we give the general formalism and kine­
matics of the production process. In Sec. I l l the model 
for pion production of the co meson is presented. Section 
IV gives the various interaction amplitudes within our 
model. In Sec. V numerical results with only pole terms 
are given and compared with experimental data. In a 
future publication a more complete numerical analysis 
will be presented. A discussion is given in Sec. VI. 

II. KINEMATICAL AND GENERAL 
CONSIDERATIONS 

Let us consider the general reaction, pseudoscalar 
meson+spin \ baryon —» vector meson+spin \ baryon. 
The energy-momentum four-vectors are denoted by q 

7 M . Gourdin and M. Rimpault, Nuovo Cimento 20, 1166 
(1961); 24, 419 (1962). A. Kanazawa, Phys. Rev. 123> 997 (1961). 
T. Tsuchida, T. Sakuma, and S. Furui, Progr. Theoret. Phys. 
(Kyoto) 26, 1005 (1961). 

8 T. Fields, S. Orenstein, R. Kraemer, L. Madansky, M. Meer, 
A. Pevsner, C. Richardson, and T. Toohig, in Proceedings of the 
Athens Topical Conference on Recently Discovered Resonant Par­
ticles, Athens, Ohio, 1963 (University of Ohio, Athens, Ohio, 1963), 
p. 185, and to be published. T. Fields (private communication). 

9 G. A. Smith, J. Schwartz, D. H. Miller, G. R. Kalbfleisch, R. 
W. Huff, O. I. Dahl, and G. Alexander, Phys. Rev. Letters 10, 138 
(1963). R. W. Huff, Phys. Rev. 133, B1078 (1964). See, however, 
S. M. Flatte', R. W. Huff, D. O. Huwe, F. T. Solmitz, and M. L. 
Stevenson, Bull. Am. Phys. Soc. 8, 603 (1963). 

for the pseudoscalar meson of mass Mp, pi for the in­
coming baryon of mass Mi, k for the vector meson of 
mass Mv, and p2 for the outgoing baryon of mass M2 
(see Fig. 1). 

We use the familiar invariant variables: 

t=(k-qy=(p2-p1y, (2.1) 

with 

(2.2) 
q+pi=k+p2, 

s+t+u=Mi2+M2
2+Mp

2+Mv
2. 

The invariants s, t, u are the squares of the total center-
of-mass energies in the s, t, and u channels denned as 
follows: 

P+Bi -> V+B2, s channel, 

P+V-+B1+B2, /channel, (2.3) 

V+ Bi -> P+ B2, u channel. 

The T matrix for the production process is related 
to the S matrix by 

Sfi= Wiq+pi-k-p*) 

/ M1M2 \ 1 / 2 

X( ) u(p2)Tu(p1). (2.4) 
\fyQhp10p20' 

The most general covariant form of the T matrix can 
be obtained as outlined in Ref. 3. There are five inde­
pendent four-vectors, e, q, P=h(pi+p2), k and 7, where 
€ is the polarization four-vector of the vector meson and 
7 is the Dirac spin operator.10 By using the Dirac 
equation, the commutation properties of 7 matrices 
and the Lorentz condition e • k = 0 which eliminates the 
scalar part, one finds that the T matrix can be written 
as a linear combination of six independent Lorentz-
invariant operators. 

6 

T(s,t,u) = T, Ai(s,t,u)Oi. (2.5) 
i=l 

The decomposition of T is not unique. We choose the 
set of Oi such that Ai contain no kinematical singulari­
ties11 and thus can be assumed to satisfy a Mandelstam 
representation. We have 

Oi=757*e, Oi^yweyk, 

02=275e-P, 0&=2ybyke-P, (2.6) 

Oz=y^e-q, O^yzyke-q. 

The scalar functions Ai are matrices in isotopic spin 

= 2^, 

}We use the following definitions for-the 7 matrices: {-ŷ T*} 
=70; 7fc*=-Y*> k = l, 2, 3; 7 5 = T V T V - Asterisk 

denotes here Hermitian conjugation. The metric used is goo= — gn 
= — g22 = — £33 = 1 a n d the units employed throughout are ft — c = 1. 

11 J. S. Ball, Phys. Rev. 124, 2014 (1961). 
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space. Their explicit representation varies according to 
the kind of particles involved in the reaction. 

As stated in the introduction we shall assume the 
spectral functions to be dominated by resonances. 
Since these resonances have definite angular momentum 
and parity, it is more convenient to express Ai in terms 
of center of mass amplitudes which are then written as 
multipole expansions. In the c m . system of the s 
channel, we define 

The F matrix is further expanded into multipole transi­
tions through projection operators12 

1=0 

q=(qo>q), * = ( M 0 , 

pi=(Ev-q), p2=(Ev-k). 

The three scalar variables are 

s=W2, 

t= Mv
2+Mp

2-2k0q0+2kq cos0, 

u= Mf+Mv2- 2Eih- 2qk cos0, 

(2.7) 

+iL~ 

+E+ 

<r«qc«k"l 

a -qckx l f t 

H-i" 
qk 

(yqe-kx l* 

P&+ 

i-i-
qk 

- iL+ i - r 

qk 

<r*q£«k~ 
p-i 

where 

qk 

•(H+DPtiq-k) (2.13) 

(2.8) 
Pi+=-

7+l+«r- I 8 

2 /+1 
Pr=-

l— ff'lg 

2 /+1 
10= 

q x v , 

where W is the total c m . energy and 6 is the c m . angle 
between the vector meson and the incident pseudoscalar 
meson. From now on we denote & = | k | , <?= | q | . The 
momenta and energies are 

{ [ > - {M!- M , ) * ] [> - (Jfi+ilf,,)2]} 1/2 

q=-

k= 

2W 

2W 

s-iMf-M*) s-{M£-M*) 
Q o = — — > ^ 

(2.9) 

and Pi(q-k) are the Legendre polynomials. The ampli­
tudes Mi+ ~, Ei+~, Zz+'~ refer to magnetic, electric, and 
longitudinal vector-meson transitions produced with 
the Mi-wave pseudoscalar meson in the total angular 
momentum / ± | states. Performing the operations of lk 

and lq in Eq. (2.13) and comparing to (2.12) we obtain 
for the Fi 

F i = E {(lMl^+El+)Pl+1
f(x) 

1=0 

+ Z(l+l)Mi-+El~lPU(x)}, 

F*=T, {(!+i)Mi++iMr}Pi'(x), 

£ i = -

2W 

s+iMf-M2) 
E2=-

2W 

s+(M2
2-Mv

2) 

2W 2W 

The differential cross section for vector-meson pro­
duction is 

Fz-T,{{El+-Ml^)Pl^
f{x) 

i=i 

+ (Er+Mi-)Pi-1
f,(x)}: 

Ft=T, (Mi+-El+-Mr-Er)Pi"(x), 

(2.14) 

da/dtt=(k/q)\x/FXi\2, (2.10) F B = _ j F l _ a ? F 8 + £ ; lLl+Pl+1'(x)~Ll-Pl^{x)1, 

where % *s a Pauli spinor. The F matrix is related to 
T matrix as follows: 

X/FXi= £(M1M2)
ll2/4:7rW2u(p2)Tu(p1), (2.11) 

with 

u(p) = 
yp+M 

[2M(E+M)Ji2 

The F matrix may be written as 

ff-qo-'kxe i<r«kq«e 
F=ivtF1+ F2+ F, 

CD-

qk kq 

i«yqq'£ i<r»kk«£ i(r«qk«e 
FA+ Fb+ F e # (2.12) 

q2 k2 qk 

F 6 = - * F 4 + £ (Ll—Ll+)P/(x), 
i=i 

where #=$•£ . Here the multipole expansion shows 
explicitly that for a massive vector field the transverse 
multipoles EJ and MJ do not exist for 7 = 0 , where / 
is the total angular momentum of the vector particle, 
but the longitudinal one LO exists. This has a simple 
meaning. The state with total zero angular momentum 
is a spherically symmetric one, but a spherically sym­
metric vector field can only be a longitudinal one. 

The amplitudes Fi defined in Eq. (2.12) are related 

12 R. Stora, University of Maryland Technical Report No. 250 
(unpublished). P. Dennery, Phys. Rev. 124, 2000 (1961). Our 
expressions for F5 and F& differ from Dennery's. We are grateful 
to W. Dunn for checking the multipole expansions. 
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to the Ai defined in Eqs. (2.5) through (2.11) as follows: 

2k-q -I 2(W+M2)k-q+k2(E1+M1)+k0(E1+M1)(E2+M2) 
8xaWTi= 1 U i — 

L(E1+M1)(E2+M2) J (Ei+MiHEi+Mt) 

qk qk(W+M2) 
8waWF2= Ax Ai, 

(E1+M1)(E2+M2) (El+M1)(E2+M2) 

-2qk qk qk 2qk(W+M2) 
&TO,WFZ= At A2-\ A3+- Ai 

(Et+MiXEi+M*) E2+M2 E2+M2 (£i+Af i) (E2+M2) 

qk(W+M2) qk(W+M2) 
A 6H A 6, 

E2+M2 E2+M2 

q2 <?2 q^+h(E2+M2)-] q*lk*+ko(E2-\-M2)l 
8iraWFi= A2 A, A&+ A,, (2.15) 

Ei+Mi E1+M1 ( £ i + M i ) ( £ 2 + l f 2 ) (E1+M1)(E2+M2) 

k2 &(W+Ei) k2q0 k2(W+M2) 
STraWF5= A x A 2 A z - \ Ai 

k0(E2+M2) k0(E2+M2) k0(E2+M2) h(E2+M2) 

i?(W+Mt)(W+E!) Pq0(W+Mt) 
Ai A 6, 

k0(E2+M2) k0(E2+M2) 

qk(W+M2) qkiW+EO qkq0 qkM2 

%iraWF%= Ar\ A21 A3-\ Ai 

*o(£i+Afi)(£,+AfO hiEt+Md ko(E!+Md k0(E1+M1)(E2+M2) 

qk(W+E1)lk
2+h(E2+M2)2 qkq£k2+h(E2+M2)^ 

h(Ei+Mi)(E2+M2)
 6 h(E1+M1)(E2+M2) *' 

where a= [(Ei+M i) (E2+M2)~]-1l2. 
In terms of F,-, the differential cross section for the production of an &> meson with polarization vector E is ob­

tained to be 

<fcr/<ffl= (k/q){[\Fl\
2-2Re(F1*F2) C O S 0 > E + | F 2 | 2 [ ( k x s)2/&2] 

+ l\Fs\
2+\Fi\2+2 Re(F1*Fi+F2*F3)+2 RtF,*Ft cos0][(q.E)2/g2] 

+ [ |^5|2+ \F,\*+2 Re(F1*Fi)-2 Re(Fi*Ft-Fs*F,) cos0][(k-8)2/£2] 
+2RelF1*F3+F1*F,+F3*Fi+Fi*F6+F1*F2+F2*Fb 

+ (Ft*F,-F%*Ft+Ft*F6) cos0](k- sq-z/kq)}. (2.16) 
Summing over the polarization of the a> meson by using 

£ e^VX) = 5,v+(WA*7), 

one arrives a t 

da/dQ= (k/q){ (3+k2/Mv
2) | F t |

2 + 2 1 F 2 | 2 + (1+k2 CO&6/M2) (| Fs1
2+ | Ft|

8)+ (l+k2/M2)(|Ff\
2+ |F,\2) 

- 4 Rt(F!*F2) cos0+2 Re(7?2*F3) s in 2 0+2( l+£ 2 cos20/Mv
2) Re(Fi*Fi)+2(l+k2 cos2d/Mv

2) 
XRe(F3*Fi) cosd+2(l+(k2/Mv

2)) Re(F1*Fi)+2(l+(ki/Mv
2)) Re(F3*F6+Fi*F6) cos26 

+ 2 ( 1 + (k2/MJ)) Re(F1*Fi+Fz*F5+Fi*F6+Fb*Fe+F1*Fs) cos0}. (2.17) 

The polarization Pn of the produced baryon along $ = q x k / | q x k | is (with unpolarized target): 

(d<x/dQ)Pn=2(k/q) Im{F1*F2 sindt- z+£F1*Ft-Ft*Fi+ (F^Ft-F^F,) cos6-F3*Fi sin20](£(q- e)2/g|q x k |) 
+ i-Fl*Fi+F1*F!>-F2*F<i+ (Fl*Fi-F1*Fs+Fi*Ft-F,*Fi+F1*Ft) cosd+F2*F3 cos20 
+ (Fi*Fi-F3*Fe) sm2d2L(q't)(k-t)/\qxkQ+l-F1*F2-F1*F6+(F2*F6-F1*Fi) cos6 

+F2*F& cos26-F^Fe sin2e][?(k- t)2/k|q xk |~ | ) . (2.18) 



V E C T O R - M E S O N P R O D U C T I O N I N M E S O N - B A R Y O N C O L L I S I O N S B1021 

For unpolarized co one has 

(d<T/dti)Pn=2(k/q) sin0 Im{2F1*F2+F1*FB-F2*FA-F2*Fz cosfl- (k2/M2)F^FA cos0 
-F9*FA(l+(& cos2d/Mv

2))- ( F 1 * F 6 + F 6 * / ? 6 ) ( 1 + ^ ^ cos0}. (2.19) 

We envisage our treatment to be applicable to reac­
tions like 7r++n->p+oo,8 K~+p —> A+co,9 K~+p—» 
A+<p, etc. In the following sections we shall consider 
the first reaction in detail, while the work on K~-\-p—> 
A+a>(<£>) is deferred to a latter communication. Ob­
viously, our calculation would also apply without 
changes to the isospin reflected reaction ir~-\-p —> n+co. 

III. MODEL FOR PION PRODUCTION OF w MESON 

As it was stated in Sec. I I , the amplitudes At defined 
in (2.5) with (2.6) can be assumed to satisfy a Mandel-
stam representation. However, we shall not try to use 
this representation; instead, for the energy region close 
to threshold of production, we assume the validity of 
the Cini-Fubini one-dimensional representation for the 
amplitudes A 4. 

Ai(u,s,t)--
Ri& RS^ Riw 

+ 
<ri(s',t) 

-M2 u-Mu
2 t-Mt

2 IT J 

+ - / du'+-

n dsf 

s —s 

dt'. 

Among the various contributions in the three channels, 
we shall keep only the one-particle and the two-particle 
lower states, the spectral functions for the latter ones 
being approximated by the existing resonant states in 
the respective channel. 

Figure 2 shows the singularities in the three channels. 
In the s channel (w+-\-n-^ p+co), there is the nucleon 
pole and the branch cut beginning at the elastic thresh­
old, (MT+MN)2. In the region between this branch 
point and the physical threshold for a> production 
(s1/2= 1720 MeV), we approximate the T-N cut by the 
two isospin-J n-N resonances, 1517-MeV N** in D3/2 
state and 1638-MeV N*** in FhJ2 state. The region 
above the production threshold is approximated by the 
2190-MeV A^*, which we tentatively assume from 
preliminary experimental results to be a G7/2 state and 
which might play an important role in 02 production 
just above 2-BeV center-of-mass total energy. 

The u channel has the same singularities as the s 
channel. As for the T-N resonances, their contributions 
are expected to be small due to the large distance from 
the physical region, and hence we shall omit these terms 
in our calculation. 

The /-channel singularities start with a branch cut 
from the two pions' contribution. The two pions coupled 
here to w and IT must be in the T=l state. Electromag­
netic isovector form factor studies have shown that 
the p meson gives probably the major contribution to 
this two-pion state. We shall henceforth replace the 2w 

TABLE I. Location of t and u singularities in the cos0 plane 
for the reaction w-f-N —> w+iV. 

( B e V ) COS0JV*** COS0JV** COS0,r+iy COSfljV COS02T COS0P COS05 

1.74 -19.60 -16.26 -9 .09 -7 .31 273 5.85 11.62 
1.82 - 8.34 - 6.98 -4 .07 -3 .35 1.47 2.74 5.09 
1.90 - 6.16 - 5.25 -2 .73 2.11 3.75 
2.20 - 3.27 - 2.86 -1 .70 1.48 2.23 

cut by an effective p-meson pole. The next branch cuts 
begin at the four-pions intermediate state, w-co state, 
p-p state, etc. There is evidence for a resonance in the 
7r-co state, the B meson13 of mass c^l.22 BeV which can 
be used to approximate the T-W cut. 

In order to exhibit a clearer picture of the role of 
the t- and ^-channel singularities, we give in Table I 
their location in the cos0 plane for the total energies 
^ 2 = 1 . 7 4 , 1.82, 1.90, and 2.20 BeV. 

The p pole and N pole in the exchange channels are 
approximately equally distant from the physical region. 
Hence, for residues of comparable magnitude, one 
would expect both of them to be important. This throws 
some light on the question of why a single-particle ex­
change does not prove to be the dominant mechanism. 

(b) t 
N 

channel 
N 

''IT (JJZK 'IT <JJL\ ''IT CJ ^A 

(c) u channel 

FIG. 2. Cutkosky diagrams: (a) 5 channel, (b) t channel, (c) \ 
channel of the pion, vector meson, two-nucleon problem. 

13 M. Abolins, R. Lander, W. Mehlhop, N. Xuong, and P. Yager, 
Phys. Rev. Letters 11, 381 (1963). 
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The energy range of the experiment of Fields et al.s 

extends from threshold (1720 MeV) to approximately 
1900-MeV total c m . energy. This range is obtained in 
the reaction ir+-\-d—> p+p+a>, interpreted in the im­
pulse approximation, from the internal motion of nu-
cleons in the deuteron. The most striking features of 
the experiment are (a) a very fast rising production 
cross section above threshold, (b) an co decay distribu­
tion indicating that p exchange is not the dominant 
process in this energy range, (c) a forward-to-backward 
production ratio in the c m . system close to 2. Walker 
et al.u also obtained two points for the total cross section 
at higher energies (2120 and 2200 MeV), which join 
quite smoothly with the curve of Ref. 8. We shall try to 
account for these data by using the following contribu­
tions: the nucleon pole and the TT-N resonances in the 
direct channel, and the nucleon exchange and p-meson 
exchange in the crossed channels. 

IV. INTERACTION TERMS 

In the case of co-meson production, we shall substitute 
the following symbols into Sec. I I : M=Mi= M2= nu­
cleon mass, ww=MV=a;-meson mass and /x=M"p=pion 
mass. 

The contribution of the three pole terms to the ampli­
tudes Ai in (2.5) is found to be 

A^-g, 
s—u 

^Ilm^t-m2) 

grgrftt +— ) 
\s-M2 u-MV 

~ga)pirgp< 
t+mj-jj2 

y/2Mma(t—m,?) 

At°=gwgjJZ-
\s-M2 u-M2/ 

s—u (4.1) 

^/lmuM(t~mp
2)' 

At»=gxgjJl( + ) 
\s-M2 u-MV 

rgwpirgp 
4M 

sllm^it-m2) 

-go>pTrgpm[^t/MwM(t-inp
2)~] , 

A5°=g„p„gpc]y2/m(a(t-m,2)'], 

^ 6 ° = 0 . 

The dimensionless coupling constants are defined 
through the following effective interaction Lagrangian15: 

£ r = grNy&NK+gJfy^+jpJfy^Nff 
+ (gpm/2M)Na^N9^ 

+ (gupr/^*) e^xtt^p***, (4.2) 
with 

a > = l/2i(yfJ,yv—yvyp), p^=plx,v—pVl and €p,va\ 

is the fourth-order completely antisymmetric tensor. 
We have assumed no magnetic coupling for the a>, 
guided by the knowledge that the isoscalar anomalous 
magnetic moment of the nucleon is very small. This 
leads to the result AQ°=0. For the propagator of the 
p meson we use D ^ = (gtiv— (W" /w p

2 ) ) / ( ^ 2 -w p
2 ) , neg­

lecting its width since the p pole is rather far away from 
the physical region. 

Combining Eq. (4.1) and Eq. (2.15) we obtain for 
the pole terms 

Fi° 

F 2 ° = -

8TW 

aqk 

^lc{i-m2~ix2) 

(s-M2)(u-M2) mw{t-

-J2{W+M){t-m<
2-ix2) 

- ^ \—((s-u)( IkqoA-UM^+g^c— , 
•u(t-m

2)l^2\ \a2 J J MA) 

aqk [ 

4ncW\ 

/W+M 
g*gM • 

(s-M2)(u-M2) 

go \ 

-M2) \s-M2 u-

m^t—m2) 

^Im^it-m2) 

(s-u+4:M(W+M))-gpm^(W+My *]} 

( 
X gpc(s-u-(W+M)(E1-3M))-gp 

(E1+M)(s-M2-m(
2)+2t(W+M)-i} 

M 

14 W. D. Walker, E. West, A. R. Erwin, and R. H. March, in Proceedings of the 1962 International Conference on High-Energy 
Physics at CERN, edited by J. Prentki (CERN, Geneva, 1962), p. 43. We are grateful to Professor T. Fields for informing us of 
the corrected results obtained by Walker et ah 

15 We have used T / 2 in the definition of pNN coupling in order to facilitate the comparison with the customary definition and with 
the theoretical conjecture which equates the pffN and pinr coupling constants. See, for example, J. J. Sakurai, in Proc. School of 
Physics "Enrico Fermi," 1962 (to be published). 
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* Y > = 
aq2 | _E2+M 

\g*gjfi-

iV=-

4xW[ * " u-M2 y/2ma(t-m*) 

bk2 { VM-W MW-M2+»2 

•«P» f (Ei+M)(s-M2—ma
2)-\ 

gpeifaW+koM—m^ — gprn 

8irWk -f̂ ->4": 

ol L 
s-M2 W(u-M2) J ma{t-m2) 

X\—(t-mt
2-^+2(M-E1)(W+M))-gpm^-

I f 

. If / - W^mf-p?) - qo(s- mJ-M2)-

(4.3) 

Jf 

Ff= \g«gJ2\ 
r(W+M)2 2E1(E2+M)+mJ-\ g„pT 

L s-Af2 w-Jtf2 J ma(t-m*)[ 
!i+—!^i—r 
J mJt—mD

2)L 
gpc^(mJ(E1+M)+kq(W+M)x) 

gpm (W+EJ (E2+M) (mJi-^+t)+qo(E2+M) (s-u)+2mjt^ 

V2 M 

where 

and 

x=co$B, a=l(E1+M)(E2+M)2-ll2
} 

b^£(E1+M)/(E2+M)2112, 

c= (E1+M)Zk0(W+M)-fnJl+2(W+M)kqx. 

For the amplitudes of w-N resonances we assume a 
Breit-Wigner formula 

lmF=-
T(TiTfyi* 

4W(W~Wo)2+(T2/4:) 

In the case of r much smaller than W, and W close to 
Wo, we find it accurate enough to introduce the resonant 
amplitudes with a form 

F=-
(rjv) 1/2 

So—s—iTso112 
(4.4) 

directly into the multipole amplitudes. The resonances 
included are16 the T = i , DZj2 state at PFi=1517 MeV 
with r x = 6 0 MeV, the T = J , Fh/2 state at IF 2= 1683 
MeV with r 2 = 8 0 MeV, and the T=%, G7/2(?) state at 
W3=2190 MeV with r 3 = 2 0 0 MeV. 

From conservation of angular momentum and parity 
we see that these resonances contribute to the following 
multipole amplitudes: 

£3/2 to £ 2 - ( £ l , / „ = 0 , 2 ) , Z 2 - ( i l , / „ = 0 , 2 ) , 
and M2~(M2,L=2); 

Ft/* to £ . - ( £ 2 , Z „ = l , 3 ) , Z 3 - ( L 2 , / W = 1 , 3 ) , 
and Af 8 - (Af3, /„=3) ; 

G7/2 to Ef(E3, /„= 2, 4 ) , Z 4 - ( L 3 , /„= 2 , 4 ) , 
and Mr(M4, / „ = 4 ) , 

where /w is the orbital angular momentum of the 
co meson. 

The energy dependence of I\- and T/ will be exhibited 
as follows: For the initial width I \ , as we deal with 
high energy pions, we can assume practically no change 
with energy in the range of interest, i.e., I \ = a constant. 
For Tf we take Tf=yfk2lo} in order to exhibit the correct 
threshold behavior, where 7/ varies slowly with energy. 
Since, in the energy range not far away from threshold, 
the particle is predominantly produced in the lower 
angular momentum state, we shall include only the 
lower la in the partial width for electric and longitudinal 
transitions. Then we have 

A7**: E2—-

;\r***: E 3 - = 

WXD£ 

Ah*: Er = 

Sl-

S2-

-s-iWiTi' 

kFE 

-s-iWuTz' 

k2GE 

Lr=-
WiDL 

Wt{st-s-iW$*) 

Lr=-

U~=-

si—s—iWiTi 

kFL 

ss—s—iWjpi 

k2GL 

W,(.st-s-iWtT,) 

2 

3 

k2DM 

Wiisi-s-iWiT!)' 

WFM 

s2(s2- -s-iW2T2)' 

k4GM 

SzWzisz-s-iWsTs) 

16 M. Roos, Rev. Mod. Phys. 35, 314 (1963). 

(4.5) 
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(a) 

FIG. 3. Separate calcu­
lated contributions at 
IF =1780 MeV to the 
differential cross section 
of the process ir-\-n —» 
co-\-p from (a) nucleon 
pole, (b) p-charge cou­
pling (gpc), (c) p-mag-
netic coupling (gpm). 
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where Si=Wi2, i = l , 2, 3. The dimensionless constants 
DE, DL, etc., are related by Eqs. (4.4) and (4.5) to the 
partial widths. 

Finally, the total amplitudes are expressed as the 
sum of pole and multipole amplitudes, 

Fi=F*+Ft, (4.6) 

where Ff are given in Eq. (4.3) and Fi1 are obtained 
from Eq. (2.14) by keeping only Er, Mr, Lr with 
1= 2, 3, 4 in the summation. 

V. NUMERICAL RESULTS 

In this section we give the results of a "first-step" 
calculation including only pole terms, i.e., the nucleon 
pole in the s and u channels and p exchange in the 
t channel with the amplitudes given in Eq. (4.3). A 
complete numerical analysis of cross sections and polari­
zations will be presented in a subsequent article. 

Out of the five renormalized coupling constants enter­
ing into our expressions, two are fairly well known and 
we take them as g^/^ir= 14.4 and go>Px

2/47r= 10.5. This 
(jopir coupling constant gives a partial decay width for 
o) —> (p7r) —> 3w of about 8 MeV.17 Therefore, we have 
three parameters at our disposal, go,, gpc, and gpm. 

In Fig. 3 we give the separate calculated contribu­
tions of p exchange (charge coupling and magnetic 
coupling) and the nucleon pole (direct plus crossed) to 
the differential cross sections. These curves are given 
for W= 1780 MeV (see Fig. 6 for W^ 1820 MeV). The 
experimental differential cross section (Fig. 4) from 
Ref. 8 includes 295co events in the energy range from 
W= 1710 to 1890 MeV with most of the events approxi-

17 The total decay width of co is given experimentally as 
rw = 9.5d=2.1 MeV by N. Gelfand, D. Miller, M. Nussbaum, J. 
Ratau, J. Schultz, J. Steinberger, T. H. Tan, L. Kirsch, and R. 
Piano, Phys. Rev. Letters 11, 436 (1963). The ratio of neutral to 
charged decays of co is known to be 10-15%. 

mately equally distributed between 1740 and 1860 MeV. 
I t is obvious that none of the theoretical curves in Fig. 3 
alone has the experimental behavior. 

The total cross section is given in Fig. 5. The open 
circles are from the experiment of Ref. 8 which is our 
main source of experimental information. The two solid 
circles are from Ref. 14. The last two points of Ref. 8 
around 1870 MeV should not be considered too seriously 
because here the impulse approximation becomes less 
reliable. We also calculated the energy dependence of 
the individual contributions to the total cross section 
in the low-energy region (<1860 MeV). Comparing 
with the experimental data in Fig. 5, we find that the 
gpc term gives too fast an increase of the total cross 
section. The p magnetic term and the nucleon term 
which give entirely wrong differential cross sections 
show a very slow increase. I t is evident that no single 
process can fit the data. 

Including all the terms in Eq. (4.3) we search for the 
values of the coupling constants which will give the 
minimum deviations of the calculated differential and 
total cross sections from the experimental data. At this 
preliminary stage the following set already gives a 
rather satisfactory fit. 

gj/4ir=1.0, g p c2/4x=0.4, 

gPn?/4:T= 0 .4 , gpm/gpc= - 1 . 0 . 

The sign of girgagupirgpm is negative, and we used the pre­
determined values, 

^ 2 / 4 T T = 1 4 . 4 , g„pTV47r=10.S. 

The theoretical curve for the total cross section is 
given in Fig. 5 while the differential cross sections at 

-1 .0 - 0 . 5 0 0.5 1.0 
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FIG. 4. Differential cross section for ir-\-n —> ca-\-p. The experi­
mental histogram is taken from Ref. 8 and includes events from 
the energy range W = 1720-1890 MeV. The calculated curves are 
for W=1780 MeV (solid line) and W =1820m (dotted line), and 
are normalized to the number of events given in the histogram. 
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W= 1780 and 1820 MeV calculated with these values 
for the coupling constants are given in Fig. 4. 

VI. DISCUSSION 

In this work we have presented a general treatment 
of the vector-meson production in pseudoscalar meson-
baryon collisions. A calculation of co production is made 
by using a model which is based on the assumptions that 
the behavior of the production amplitude in the low-
energy region is given to a good approximation by in­
cluding only the closest singularities, and that 7r-nucleon 
resonances dominate the dispersion integrals. 

In the previous section we have given the results of 
a numerical calculation in which only the pole terms 
have been taken into account. Although unitarity is 
obviously not fulfilled in such an approximation, it 
still could give sensible results in the threshold region. 
Indeed, we are able to obtain several significant 
conclusions. 

A single-exchange process does not give an adequate 
picture to the production amplitude behavior. The in­
fluence of p exchange and N pole on the production 
process is shown in Sec. V (see also Fig. 3). The ex­
perimental differential cross section indicates that 
p exchange is one of the main mechanisms. However, the 
crossed nucleon pole is also necessary to give a balanced 
and reasonably fit picture. The importance of the 
crossed nucleon pole has already been exhibited in the 
Chew-Low theory.18 

With all the pole terms we obtain a good fit to the 
total cross section up to approximately 1850 MeV, 
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FIG. 5. Experimental and calculated total cross section for 
ir+n —> o)-\-p. Open circles are from the experiment of Fields et at. 
(Ref. 8) and the two solid circles represent the data of Walker 
etal. (Ref. 14). 

18 G. F. Chew and F. E. Low, Phys. Rev. 101, 1571 and 1579 
(1956). 

FIG. 6. Calculated dif­
ferential cross section at 
IF=1820 MeV with the 
gpc coupling only. Solid 
line includes all the am­
plitudes, while in the 
dotted line the longi­
tudinal components are 
omitted. 
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though only a fair fit to the differential cross section. 
We remark that the experimental forward-to-backward 
ratio F/B is about 1.9, while our curves (Fig. 4) give 
F/B=1A and 1.25 at 1780 and 1820 MeV, respec­
tively.1^ The main trouble comes from the dip in the 
forward direction which is expected to rise up when the 
7r-nucleon resonances are taken into consideration. Only 
small simultaneous changes to all the coupling constants 
can be made such that the calculated total cross section 
will not deviate too much from the experimental data. 
Even if we relax this requirement we still cannot raise 
the dip in the forward direction. 

From the isovector nucleon electromagnetic form 
factor analysis, the ratio gpm/gpc is approximately —1.6 
to — 2.7.19 In our fit to the total and differential cross 
sections, we need gpm/gPc negative and the value of 
— 1.0 that we obtain is gratifyingly close to the one 
from form factor calculations. 

The trend of the values we obtained agrees with the 
results of other calculations that the co-meson coupling 
is stronger than the p-meson coupling to the nucleons. 
As to their magnitude, our coupling constants squared 
are about three times smaller than those of Scotti and 
Wong.2 On the other side, Beder5 has recently analyzed 
7T° photoproduction above 800-MeV laboratory photon 
energy and has showed that the contribution of the 
vector-meson exchange is essential to the description 
of the recoil nucleon polarization and the higher energy 
cross sections. His fitting of the data gives 

(g.V4ar)r«(n*y)^1.6 MeV. 

As Tu(n°y) is known to be approximately 1 to 1.5 MeV, 
this gives a value for gj/^ir in very close agreement 
to ours. 

It is also of interest to mention that if gupr would be 
much smaller than its present value (as it was believed 

18a Note added in proof. There is a slight error in the curves of 
Fig. 4, the correct ones being closer to the experimental points in 
the region — Kcos0<— 0.25. This explains the ratios F/B = 1A 
and 1.25 quoted in the text, which might not be apparent from the 
drawn curves. 

19 See, for example, M. M. Islam and T. W. Preist, Phys. Rev. 
Letters 11, 444 (1963). This paper contains further references. 
There is a difference by a factor of f between our definition of 
gpm and the one used in this article. 
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before the measurement of the oo width), our fits to the 
differential cross section would be much poorer. 

As to the value of gpc
2/47r we obtained, we should like 

ot mention that if the p meson is coupled to the isospin 
current,20 the universality of the couplings requires 
gpC

2/47r=gpT7r
2/4:7r^().5. The value we obtained for 

gPc/^ in this preliminary numerical work is very close 
to this number. 

The search for the values of the coupling constants 
was done under the restriction that they should be 
within one order of magnitude from the "expected" 
values for a strongly interacting vector meson. We did 
not search for a fit with values very remote from this 
region. 

If we assume that the a> meson is a pure member of 
the unitary octet, it is interesting to find from our values 
for gu and gpc the mixture of d and / couplings of vector 
mesons to baryons in the unitary symmetry model. If we 
let dg be the coefficient of the Z?-type coupling and fg 
that of the F-type coupling,21 we have 

gPC=(d+f)g, g„=(-g/S0)(<*-3/). 

Our analysis gives gj/gpc2:= 2.5. With d+f= 1 we have 
two possible sets: 

f /=0 .94 
£«/gpC=1.58; 

U = - 0 . 0 6 , 

f / = - 0 . 4 4 

The first set is consistent with pure / coupling while for 
the second one the d coupling is dominant. For the 
pseudoscalar meson couplings to baryons the results 
from various analyses show that d and / (similarly 
defined) are both positive, with d/fo^.2-3. 

I t is, however, more probable that both co and <p 
mesons are mixtures of a unitary symmetry singlet (Xi) 
with T = 0 member of an octet (X8). If we use for the 
physical particles the wave functions22 

co= (y/2/y/5)xx- (l/v3)x8; *>= (l/V3)xH- (v2/V3)x8, 

we have to replace the co coupling by ga} = g{d—3f)/3 
+v2gi/V5, where g± is the coupling constant of the 
unitary singlet to the baryon current. In order to obtain 
the f/d ratio in this case, we need more information. 
The experimental evidence23 seems to indicate that the 

20 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954); J. J. 
Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960). 

21 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman, 
Nucl. Phys. 26, 222 (1961). 

22 F. Giirsey, T. D. Lee, and M. Nauenberg (to be published). 
The wave functions obtained from the model discussed by these 
authors agree with the empirical mixing angle given, for example, 
by J. J. Sakurai, Phys. Rev. 132, 434 (1963). 

23 Y. Y. Lee, W. D. C. Moebs, Jr., B. P. Rose, D. Sinclair, and 
J. C. Van der Velde, Phys. Rev. Letters 11, 508 (1963). 

cp coupling to nucleons is much weaker than the co-cou­
pling. If we assume gv= — y/2g(d— 3 / ) / 3 + g i / v 3 ~ 0 , 
then one has g0}o^(d—3f)g. Using again the value given 
by our analysis (gw

2/gpc2) = 2.5, we obtain the two sets 

j f = - 0 . 1 5 

f/=—0.65 

14=0.35 

Now the first set gives f/d negative and d coupling 
favored over / coupling. I t is interesting that similar 
conclusions have been obtained24 from an analysis of 
nucleon electromagnetic form factors. 

Another interesting point is the effect of the F& and 
Fe amplitudes, which are characteristic of the massive 
vector meson. Without the inclusion of these terms 
("photon-like" behavior) the p-exchange term gives a 
much more pronounced forward contribution, as is 
shown in Fig. 6. The other terms do not show such a 
marked change in the differential cross section. The 
contribution of the F&, F6 amplitudes to the total cross 
section is fairly small in the region close to threshold. 
For example, at W= 1820 MeV, the total cross section 
including all the six Fi amplitudes is 1.46 mb, while it is 
1.58 mb without F& and FQ contributions, which is a 
8% effect. We may say that the co meson is produced 
with a photon-like behavior or transversally at first, 
and as energy goes higher the longitudinal component 
is excited with an increasing strength. However, it will 
be suppressed when the energy is much larger than 
the rest mass. At present we do not have enough ex­
perimental results to study its polarization or alignment. 

In concluding, we should like to stress the importance 
of additional and more detailed experiments of the type 
meson+baryon-^ vector meson+ baryon, which allow 
a theoretical analysis and consequently the information 
on the values of the fundamental coupling constants 
will follow. 
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